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Stochastic magnetohydrodynamic turbulence in space dimensiords=2
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Interplay of kinematic and magnetic forcing in a model of a conducting fluid with randomly driven mag-
netohydrodynamic equations has been studied in space dimertsioRsby means of the renormalization
group. A perturbative expansion scheme, parameters of which are the deviation of the spatial dimension from
two and the deviation of the exponent of the powerlike correlation function of random forcing from its critical
value, has been used in one-loop approximation. Additional divergences have been taken into account that arise
at two dimensions and have been inconsistently treated in earlier investigations of the model. It is shown that
in spite of the additional divergences, the kinetic fixed point associated with the Kolmogorov scaling regime
remains stable for all space dimensiaths-2 for rapidly enough falling off correlations of the magnetic
forcing. A scaling regime driven by thermal fluctuations of the velocity field has been identified and analyzed.
The absence of a scaling regime near two dimensions driven by the fluctuations of the magnetic field has been
confirmed. A renormalization scheme has been put forward and numerically investigated to interpolate be-
tween thee expansion and the double expansion.
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[. INTRODUCTION forcing from its critical value. In this double expansion, the
standard procedure of minimal subtractions was used in the
During the past two decades, asymptotic analysis of storenormalization of the corresponding field-theoretic model.
chastic transport equatiofblavier-Stokes equation, magne- We have carried out a one-loop RG analysis of the large-
tohydrodynamic (MHD) equations, advection-diffusion scale asymptotic behavior of the model and confirmed the
equation and the likehas attracted increasing attention. basic conclusions of the previous analyE&d] that near two
Various forms of the renormalization grouRG) have dimensions a scaling regime driven by the velocity fluctua-
proved to be particularly useful in this investigation, and ations may exist, but no magnetically driven scaling regime
great deal of work has been carried out in the RG analysis ofan occur. We have also identified a scaling regime driven
the stochastic Navier-Stokes equation and the problem of gy thermal fluctuation$g] of the velocity field.
passive scalafturbulent diffusion or heat conductipfl,2]. ~ Second, we have performed a renormalization of the
Somewhat less effort has been devoted to the asymptotigqde| with a different choice of finite renormalization in
analysis of stochastic magnetohydrodynamics since the Pigsrger to find at which noninteger dimension the magnetic
neering work of Fournieet al.[3] and Adzhemyaet al.[4]. 04 point ceases to be stable. This borderline dimension

In particular, in .these papers the existence of t\.NO differenbvas found in Ref[3] with the use of the momentum-shell
anomalous scaling regimdginetic and magnetjcin three RG in a setup valid in a fixed space dimensibn 2. In the

dimensions was established corresponding to two nontriviatlwo_ arameter expansion with the deviation of the exoonent
infrared-stable fixed points of the renormalization group. It P P P

was also conjectured that in two dimensions, the magneti8f the powerlike correlation function of random forcing from

scaling regime does not exist due to the instability of thelS critical valuee and 25=d—2 as expansion parameters,

magnetic fixed point. However, in both papers, there werdhis effect gannot bg traced. Thergfqre, we havg carrieq outa
flaws in the renormalization of the model in two dimensionsRG analysis according to the “principle of maximum diver-
[2,5]. Even more serious shortcomings are present in rece@ences” in the sense that we have included in the renormal-
investigations of MHD turbulencgs,7], in which a specifi-  ization all graphs relevant in two dimensions, and fixed the
cally two-dimensional setup has been applied with the use dinite renormalization in a way that reproduces the results of
the stream function and magnetic potential. Therefore, rea momentum-shell renormalizatidi®] at one-loop order.
sults obtained for the two-dimensional case in these paperBhis procedure gives rise to RG functions such that in the
cannot be considered completely conclusive. limit of small &, €, they reproduce the results of the two-
In the present paper, we have first carried out a fieldparameter expansion, and in the limit of smalbut finite &)
theoretic RG analysis of the stochastically forced equationghey yield the results of the usualexpansior3,4].
of magnetohydrodynamics with the proper account of addi- We have also investigated the long-range asymptotic be-
tional divergences that arise in two dimensions. This givedavior of the model in the framework of the latter scheme
rise to a two-parameter expansion of scaling exponents andithout any small parameter and found, in particular, that in
scaling functiong5], the parameters of which are the devia- this case, thermal fluctuations make the value of the border-
tion of the spatial dimension from two and the deviation ofline dimension of the magnetic scaling regime significantly
the exponent of the powerlike correlation function of randomlower (d.=2.46) than in thes expansior{3] (d.=2.85).
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This paper is organized as follows: Section Il starts from

the functional formulation of the solution of stochastic

MHD. This is convenient for the analysis based on the stan-
dard field-theoretic RG approach, the details of which are

described in Sec. lll. The Kolmogorov constant for MHD is
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X[BK2~2972A<+ CK2]. (2.6)

calculated in Sec. IV at the leading order of the two-a|l the dimensional constant, 1, Us10, Jy20, aNdGys0, N

with maximum divergences is carried out in arbitrary dimen-

sion, and the observed strong effect of thermal fluctuations i
discussed. In Sec. VI, the conclusions are presented.

Il. FIELD THEORY FOR STOCHASTIC

MAGNETOHYDRODYNAMICS

We consider the model of stochastically forced conduct-

ing fluid described by the system of magnetohydrodynami
equations for the fluctuating velocity fieldt,x)=v(x) of an
incompressible conducting fluid and the magnetic inductio
B=pub (p is the density and. the permeability of the
fluid) in the form[3,4]

v+ PL(v-V)v—(b-V)b]— r,Viv=F?, (2.2
db+(v-V)b—(b-V)v—rouoV2h=£P, (2.2

together with the incompressibility conditions
V.v=0, V.f'=0, V.fP=0. (2.3

In Eq. (2.2), P is the transverse projection operatog, the
(unrenormalizepkinematic viscosity, and W} the unrenor-

The choice of the values of the parameterand 6 deter-
tines the powerlike falloff of the long-range forcing corre-
lations and the space dimension of the system under consid-
eration.

We choose uncorrelated kinematic and magnetic driving
[(f*fP)=0], because we are considering arbitrary space di-
mensiond=2 and it is not possible to define a nonvanishing
correlation function of a vector field and a pseudovector field

Sn this case. This may be done separately for integer dimen-

sions of space, but, contrary to the claims of some authors

r\[3,10], it is no obstacle for application of the R@].

The structure of the matri0,,, in Eq. (2.6) reflects a
more detailed intrinsic statistical definition of forcing, whose
consequences are deeply discussed in R&f41]. Techni-
cally, it is necessary to accompany the long-range correla-
tions[corresponding to the terik?2°~2A € in Eq. (2.6)] by
local correlationgdescribed by the analytic i? term in the
correlation function(2.6)] in order to construct a consistent
renormalization procedure for the corresponding field-
theoretic mode[5,12,13. This feature has been overlooked
in the previous analyses of the probl¢&4]. The prefactors
uovs andu3v3 in Eq. (2.5 have been extracted for the con-
venience of calculations.

malized magnetic Prandtl number. In statistical applications The definition (2.6) includes two principal—low— and

of the field-theoretic RG, the unrenormalizéshre param-
eters are the physical ones.

The statistics o andb are completely determined by the
nonlinear Eqs(2.1),(2.2),(2.3), and the probability distribu-
tion of the external large-scale random fordé&s f°. It is
customary[3,4] to consider random forced andf® having

high—wave-number scales—kinetic forcings separated by
transition region in the vicinity of the characteristic wave
number of ordeiO([ B/C]Y(29+2A9) The forcing contribu-
tion with local correlations gives a phenomenological de-
scription of small-scale thermal fluctuations of the magnetic
induction and the velocity fiel@8].

a zero-mean Gaussian distribution with correlation functions The long-range parts of the translational invariant corre-

of the form

dd

Dmn(Xx)= 5(t)j (2

KmKn

k2

e‘k'XD(k)( Sen— ) (2.4

)d

in which the time correlations of the fields have the character
of white noise, while the spatial correlations are controlled

by the scalar functiorD (k). Transversality of the matrix
(2.4) is a consequence of the equatidvisv=V -b=0.

To analyze renormalization near two dimensions, we con
sider Eqgs(2.1), (2.2), and(2.3) supplemented by the forcing
statistics

(Fm(x)fR(X2)) = UOVgDmn(Xl_XZ 11.9410,9v20})»
(F2(%1) F2(X2)) = U3 3D (X1 —X2:{2, Up10. Ov20})

(FL(x)fR(x2))=0, (2.5

where

lation functions(2.6) become scale invariant at the values
=2,a=1. For the exponent, the valuee=2 is physically
most reasonable, since it represents the assumption that ran-
dom forces in the Navier-Stokes E@.1) act at very large
scales, which substitutes for the effect of boundary condi-
tions.
We are working in an arbitrary dimension, but the renor-
malization will be carried out within the two-dimensional
model. In two-dimensional magnetohydrodynamic turbu-
lence, in contrast to fluid turbulence, there are direct energy
cascades in both two and three dimensions. Therefore, it is
natural to expect that the scaling behavior is rather similar in
both cases, and we apply the same forcing spectrum in all
space dimensiond=2.
We use the correlation functions

(0}, (XD v} (X)vj(X3) - - - vj (Xn)), 2.7)
where 1=j,<d,r=1,2,... N as measurable quantities for
the description of turbulence statistics. We have applied the
RG method to the calculation of asymptotic properties of the
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correlation functions in the way initiated in Réfl4]. This  malized. There seems to be a certain amount of confusion
approach is based on a formal mapping from the stochasti@bout this point in the recent literature. For instance, in Refs.
model (2.4) to a quantum-field mod€]15,16 with a De  [6,10], the authors erroneously neglect renormalization of
Dominicis-Janssen actio{v,v’,b,b"}, which is a func- nonlinear terms as high-order effect. The approach, adopted
tional of the physical fieldv,b and independent solenoidal in Ref.[6] for two-dimensional MHD turbulence, was quite
auxiliary fieldsv’,b’. Thus, the correlation function@.7) recently criticized by Kim and Yan{7], who, alas, in their
may be expressed as functional averages with the “weighfield-theoretic treatment of the same problem, ignore renor-
functional” W=expS. The system of the stochastic MHD malization of the Lorentz force without any justification.
Egs.(2.2), (2.2, (2.3, (2.5, and(2.6) gives rise to the fol- They also neglect renormalization of the forcing correlations
lowing De Dominicis-Janssen action: by effectively considering renormalization of the model at
d>2, which does not seem to be appropriate in a setup in

S— Ef dx fdx [ugrin’ (x,) which the strictly two-dimensional quantities, the stream
2 1 200V ml function and magnetic potential, are used for the description

, 5 3., of the problem.
X Dmn(X1—X2:{1.,9,10,9020H U n(X2) +Ugvghp(X1) The analysis of the autocorrelation functions of the veloc-

ity field and magnetic induction is essential near two dimen-
sions, since in two dimensions additional divergences in the
graphs of the 1Pl Green’s functiod¥ " andI'®"®" occur.
The point here i$5,12] that the nonlocal term of the action
(and the similar one with the auxiliary fiel')

X D mn(X1—X2:{@,0p10:Ib20}) Dn(X2) ]
+J dx{v'-[—av— (V- V)v+ 1oV2v+ (b- V)b]
+b' [ b+ UgreV2b+(b-V)v—(v-V)b]}. (2.8

The dimensional constantg,ig, 9p10, 9v20, and gyo0, f dtf ddxlf A%V’ (Xq,1) -V (Xp,t)
which control the amount of randomly injected energy

through Eq.(2.5), play the role of expansion parameters of d
the perturbation theory. Xj d’k K2~ 20— 2egik-(x1=%p)
(2m)°

IIl. TWO-PARAMETER EXPANSION OF THE MODEL

brought about by the force correlation functiof@s) is not
renormalized since the divergences produced by the loop in-
tegrals of the graphs are always local in space and ftirfie
The simplest way to include the corresponding local counter-
Avv’(k t):Av’v(_k —t)=6(t)P (k)e—vokzt termsv’'V2v’ andb’V?b’ in the renormalization is to add
e mnt m ' correspondindocal terms to the force correlation function at
the outset in order to keep the model multiplicatively renor-
malizable, which is convenient technically. This is why we
1 have used the force correlation functig@ss) and(2.6) with
A% (k,t)= EUoVSPmn(k)ef kazlt\(gvlokfzefz&Jr 9,20 both long-range and short-range correlations. As a result, the
action(2.8) is multiplicatively renormalizable and allows for
(3.)  a standard RG asymptotic analy§is].
1 In the momentum-shell analysis of Fourniet al. [3],
bb .2 —Ugrok?lt] —2ae-26 these divergences were taken into account only in the special
Amr(k,D ZUOVOPm”(k)e (Gb10K * Gv20) case, when the force correlation functi@h6) is local, i.e.,

) ) ) ) «k? (formally, this was fixed by the condition & 2Ae
in the time—wave-number representation. With due account o \yhich excludes\e from the parameters of the modlel

of Galilei invariance of the actio(fz._8), and cargful a_nalysis In the field-theoretic treatment of Adzhemyanal. [4], the
of the structure of the perturbation expansion, it can b&gntripution of the additional divergences was prescribed to
shown[4] that for any fixed space dimensiai>2, on!y a renormalization of the nonanalytic terek?=29-2¢ al-
three one-particle irreduciblélPl) Green functionsI'®"",  though only analytic irk? terms are produced in the course
I'°®" andI''P® with superficial UV divergences are gener- of renormalization.
ated by the action. They give rise to counter terms of the The model is regularized using a combination of analytic
form already present in the action, which thus is multiplica-and dimensional regularization with the parameterand
tively renormalizable by power counting for space dimen-26=d—2. As a consequence, the UV divergences appear as
sionsd>2. poles in the following linear combinations of the regularizing
We would like to emphasize that the structure of renor-parameterse, 8, 2e+ 6, and @+1)e+ 6. The UV diver-
malization should always be analyzed separately and it is ng@ences may be removed by adding suitable counterterms to
at all obvious that the nonlinear terms are not renormalizedhe basic actiorSg obtained from the unrenormalized one
in the solution of the stochastic MHD equations. In fact, (2.8) by the substitution of the renormalized parameters for
direct calculation shows that the Lorentz-force term is renorthe bare ones:g,10— #%Gy1, Gp20— & 2°Up2,  Gbio

The action(2.8) gives rise to four three-point interaction
vertices defined by the standard rulég], and the following
set of propagators:

AP (k)= AP P(— K, —t) = O(t) P (k) &~ Uorok’t,
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— u?2gu1, Ohoo— 4 2°Qpp, Yo— ¥, Ug—U, Whereu is a Independence of the unrenormalized Green’s functions of
scale-setting parameter having the same canonical dimensidine scale-setting parametgrmay be expressed in the form
as the wave number. of differential RG equations for the renormalized 1PI

To construct an analog of the usualexpansion withe  Green’s functions. To keep notation simple, we quote these
and 5 as small parameters of the same order of magnitude, g#quations only for the renormalized pair-correlation func-
is convenient to use the minimal-subtraction scheme for théions of the velocity field and the magnetic induction. We
renormalization. In this approach, only singular parts of thedefine the Fourier transforms as
Laurent series of the superficially divergent 1Pl Green's
functions are included in the renormalization constants, WR' mdt1—t2,K;9)
which give rise to the counter terms added to the basic action

. . ) d
to make the Green'’s functions of the resulting renormalized _ X1 K- (Xq—Xp)
o ; ; = | T3 (vm(X1,t)vn(Xz,tp)) e P22,
model UV finite. The counterterms for the basic action cor- (2m)d
responding to the unrenormalized acti@®) are

WR it —t2,k; Q)

As=f dx v(Z,—1)v'Viv+ur(Z,—1)b’V?b

d%;, ik- (X1~ %p)
:JW<bm(X1-t1)bn(x21t2)>e 1

1
- 5(1—24)UV3gU2,u*25v’V2v’
The basic RG equations for the correlation functions are
1
+5(1=Zs)Ur3gpop 20" V20’ d d d
2 R _ _ vy
M(7/L+Bg079 ylvﬂv Wr'mi=0,

+(Z3—1)V'(b-V)b

: (3.2 J J J
M@ﬂBg%— Y1V oo+ Ys

WE,=0, (3.9
where the renormalization constaitg, Z,,Z,,Z5 renormal-
izing the unrenormalized (barg parameters e,  wherep,dy is a shorthand for
={9,10,920,9b10,Ib20,Uo, Yo} and the constanZs renor-
malizing the fieldsb, andb’, are chosen to cancel the UV J J J J J
divergences appearing in the Green’s functions constructed 95_'89”15901 + Bgvz 99,2 + Bgb 991 +ﬁ9b2@
using the basic action. Due to the Galilean invariance of the
action, the fields/’, andv are not renormalized. .
In a multiplicatively renormalizable model, such as Eq. You’
(2.8), the counterterms$3.2) may be chosen in a form con-
taining a finite number of terms of the same algebraic strucThe coefficient functions of Eqg¢3.4) B4 and y; are ex-
ture as the terms of the original acti¢®.8). Thus, all UV  pressed in terms of logarithmic derivatives of the renormal-
divergences of the graphs of the perturbation expansion magation constants. We use the definitions
be eliminated by a redefinition of the parameters of the origi-
nal model. _ dInz
Renormalized Green's functions are expressed in terms of LON T
the renormalized parameters

Jg
K Bg_ﬂﬁ

(3.9

0
whereg={0,1,9,2,9p1,9p2,U}, and the subscript “0" re-

— —2e-2 — 2652 -1
901=0%u108 “Z1Za0 Qu2=Guaok" 2122747, fers to partial derivatives taken at fixed values of the bare
parameter,. It should be noted that here the functiofs

_ -1 _ -1
v=voly, U=Uly 2y, (33 andy, are functions of the parametegsonly.
2 aes 251 285 529—1o1 Expressing the correlation functions through dimension-
9o1=9ba0 ~ 2125257, Op2= Qu2ok 21523 L5 ", less scalar functionR, andR,, as
which are the parameters of the renormalized act8n W2 (1 k:g) =12k 2P (K)R,(7,5;Q),

=Sz +AS connected with the unrenormalized acti¢h8)
by the relation of multiplicative renormalization _
d b WE (ki 9) = 72K 2P (K)Ry(7,5;),
S{v,b,v' b’ el =S{v,bz¥? v’ b’ Z; 2 e},
a y=S{v.bZ; 3ol wheres=k/u, se[0,1] is the dimensionless wave number,

: : 2 ; : : :
wheree is a shorthand for all the renormalized parametersand 7=tvk® the dimensionless time, and solving E8.4)
Jy1, Uy2, b1, Obz. U, andw. Calculation of the correlation by the method of characteristics, we obtain the correlation

and response functions of the velocity and magnetic fielgfunctions in the form
with the use of the renormalized action yields renormalized o — 25 — —
Green’s functions without UV divergences. R mdt,K;9)=Pmn(k)v°k™“°R, (tk“r,1;9),
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ngmrﬁt,k;g)=ef§d>< ¥3lg(x)1/x
X Prnr(K) vk~ 2Ry (thPp, 139), (3.6)
whereg is the solution of the Gell-Mann—Low equations:

dg(s)
dins

ﬂg[g(s)]!

3.7

andv is the running coefficient of viscosity

D= pe X vlgl/x

PHYSICAL REVIEW E 64 056411

where | is the 5x5 unit matrix and the matrix(}
=((?,89/o’!g)|g*. Solutions of this system behave like=g*
+O(sM), whens—0. The exponents;, j=1,2,3,4,5 are
the eigenvalues of the matr?. In the vicinity of the fixed
point, all the trajectorieg(s) approach the fixed point, if the
matrix () is positive definitdi.e., Req;)>0].

Apart from the Gaussian fixed poing},=g;,=0p;
=gp,=0, with no fluctuation effects on the large-scale as-
ymptotics, which is IR stable fo§>0,e<0,a>0, there are
two nontrivial IR stable fixed points of the RG with non-
negativegy; , gy, 9p1. Ub, andu®.

The thermal fixed point is generated by short-range cor-
relations of the random force with

The scale-invariant asymptotic behavior of the correlation

functions stems from the existence of a stable fixed point of
the RG transformatio;=0 determined by the Gell-Mann—

Low Egs.(3.7).

The definitions(3.5) and the relation$3.3) yield g func-
tions of the form

Bgu1=9v1(—2€+2y1+v,),
Bgv2=0v2(20+2y1+ ¥2— va),
Bgb1=9p1(—2a€+ y1+2y,— v3), (3.9
Bgb2=0p2(20+ y1+27v,— v3— ¥s),
Bu=U(y1—v2)-

At one-loop accuracy, the functions are
1
'yl:@[u(gvl_l—gv2)+gb1+gb2]-

:i 0y1179p2=9b1~ 9h2
Y278 ut1 ’

1
Yszﬁ(gbﬁgbz_gul_guz), (3.9

_ 1 u(gut 9u2)%+ (gp1+ Gb2)?
74" 32m 0y '

95=0, gl=—4m(1+ 175,

95:=0, 95,=0, (3.11
and the inverse magnetic Prandtl number
17-1
*:\/—2 =1.562. (3.12

Physically, the asymptotic behavior described by this fixed
point is brought about by thermal fluctuations of the velocity
field [8]. The region of stability of the thermal fixed point
(3.11,(3.12 is 2¢+36<0,5<0 in the 8,e plane. For the
magnetic forcing-decay parametay the stability region is
determined by the inequalitya+ (13+ /17)5<0.

The kinetic fixed point[3] generated by the forced fluc-
tuations of the velocity field is given by the universal inverse
magnetic Prandtl numbéB.12), the parameters

. 1287  €(2e+39)
Gu1 9(J17-1) €té '
1287 €

gvzzmm, (313

and zero couplings of the magnetic forcing
951=952=0,

and it may be associated with turbulent advection of the

There are no UV divergences in the 1Pl Green's functionnagnetic field. The values @f*, andg?, in Eq. (3.13 cor-
: 3 ) 3.

I'®"®" in the one-loop approximation, therefore,
Zs=1, (3.10

which is a specific property of the two-dimensional MHD.

75=O!

Large-scale asymptotic behavior is governed by infrare
stable fixed points of Eq$3.7), determined by the system of

equations_,Bg(g*)zo, and the condition§—>g*, when s

respond to those found previously in RES]. The region of
stability of the kinetic fixed point in thes,e plane ise
>0,2e+36>0. The stability of this fixed point also re-
quires that the parametar< (13+ \/17)/12~1.427 indepen-
(fent of the ratios/ e. In spite of the absence of renormaliza-
ion of the forcing correlation, the momentum-shell approach
[3] yields the same condition.

The system of Eqs.3.9), (3.9, and(3.10 for the fixed

—0. Forg(s) close tog*, we obtain a system of linearized points in this multicharge problem is rather complicated, and

equations

d _
(Is§—ﬂ)(g—g*)=0,

thus, has severalin general complex-numbkersolutions,

which we do not quote explicitly here, because they are not
physically relevant: apart from the fixed points listed above
there are eight IR unstable real-number fixed points in the
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physical region(all g=0) of the parameter space, and sev-where for the running coefficient of viscosity the expres-
eral unphysical ones. Among the unstable fixed points are, igjon

particular, all the possible candidates twagnetic fixed

points, i.e., fixed points with a nonvanishing magnetic cou- _ (g 1oUoV8 13

pling constant. Therefore, the conclusion made in R&fd] p=| === | k2B (4.2
(although on inconsistent groundbat the RG does not pre- Gyl

dict any magnetically driven scaling regime at and near two , )

dimensions, is confirmed in the double-expansion approaci{!as been used. The relati¢d.2) is a consequence of the

It should be noted, however, that the vanishing of theconnection between the functiog,, By, 1, andy, [18].
function y5 renders the linear combinations pffunctions in At the kinetic fixed point, the spectrum has the form
the functionsfBy,; and By, equal: they both contain only 3\ 213 L 4e3
y1+27v,— v3 [see Eq(3.8)]. This has the important conse- E(k)= Ou10Uovp| (d—1)k
quence that there is no fixed point with bagp; and gy, g¥,u* (4) 921 (d/2)
nonvanishing: at least one of them must be zero. This, of
course, severely reduces the set of possible magnetic fixed +Z3(g)573(9*)Rb(0,1;g*)]_ (4.3
points at the outset.

It would be interesting, however, to follow the crossoverHowever, at leading ordeR,(0,1;9) = 1/2(gy1+ 9p2), and
from this regime to the scaling regime governed by the comsince at the kinetic fixed poirgy, = g5,=0 andys(g*) >0,
petition of the stable kinetic and magnetic fixed points,only the scaling functiorR, survives here.
which exists in three dimensions. In the double-expansion The kinetic- and magnetic-energy injection ratgsand
approach, the space dimension is assumed to be close to twg, may be expressed as
therefore, the results obtained above are not applicable to

[R,(0,1,9%)

this end. In the usua expansion, the leading-order value of 11 d9%
the borderline dimension between the two regirdes: (3 sv=§f S(Fk) - fU(=K)),
+/649)/10~2.848[3]. (2m)

All the renormalization constants and the RG functions
guoted above may be calculated also at figité@he resulting _1J d’k £501) - F5( — K 4.4
system of fixed-point equations allows for a solution in a b= 2 (277)"( (K)-FA(= ) @4

form of an e expansion(with finite §) and yields the same

result as the usua expansion at the leading order. How- For our choice of correlation functions after the introduction
ever, this approach is not self consistent in the sense that thg simple sharp cutoffs, Eq4.4) yields the relation between
field theory is not renormalizable at fini& but only in the  the unrenormalized values of the coupling constants and the
form of a simultaneous expansion in the coupling constantenergy injection rates in the form

and § [17]. Therefore, in order to construct an interpolation

procedure between the § expansion and the usualexpan- (d— 1)uoy8 d9
sion, something has to be done with the UV divergences atsz,:Tf d(gvlo|<2725725+ Jy20k?),
d>2 introduced by the local terms in the force correlation k<k<ka(2)
functions. This issue will be dealt with in Sec. V.
(d—l)ugvgf d%
IV. KOLMOGOROV CONSTANT FOR STOCHASTIC eb 2 k|<k<k('j(27T)d
MAGNETOHYDRODYNAMICS NEAR TWO DIMENSIONS e
X (p10k? 20722+ gpook?), (4.9

The energy spectrurig(k) in magnetohydrodynamics is
given by the sum of equal-time pair-correlation functions ofwherek, is the wave number corresponding to the integral
the velocity field and magnetic induction scale, andky,k; are the characteristic wave numbers of vis-
cous and resistive dissipation, respectively.

In the stationary state modeling developed isotropic tur-
bulence, the energy injection is assumed to take place at
large scales. Therefore, we put the parameadessandgy,g,

Note that the energy spectrum is defined through unrenotvhich correspond to small-scale injection of energy, equal to
malized correlation functions. From Eq8.6) and(4.1), we ~ Z&rO- It should be borne in mind that the corresponding run-

infer an expression for the energy spectrum in terms of thing coupling constants are created in the course of renor-
scaling functions as malization regardless of the unrenormalized values of these

parameters. The present perturbative calculation yields only
(d—1)ki=43 [ g L3\ 28 the leading order in the, § expansion of the amplitude co-
E(k)= ( 010 0_0) [R,(0,1,9) efficients in the scaling form of the correlation functions.
(4m¥2r(d/2)\ g,u Therefore the coupling constants should be solved from Eq.
. _ . (4.5 as functions ok, ande, also only at leading order of
+Z5(g)e/ 1@ 7al9xR (0,1:9)], €,8 expansion. Thus, we arrive at the relations

wgg(t,x;t,x)+wgg(t,x;t,x):2f dk E(k). (4.2
0

056411-6



STOCHASTIC MAGNETOHYDRODYNAMIC TURBULENCE . .. PHYSICAL REVIEW E 64 056411

butions to the complet&dressegl correlation function would

3
Uo¥09v10, 4o .
=———ky “*, not reproduce such a structure in the wave-vector space.

&

v
16m In contrast with particle field theories, we will keep the
urdg cutoff parameter\ fixed, although large compared with the
szw(k&)kme, (4.6) physically relevant wave-number scale. This introduces an
16 explicit dependence on in the coefficient functions of the

RG, which has to be analyzed separately in the large-scale
limit in the coordinate space. The setup is thus very similar
to that of Polchinsk{20].

The RG equations maintain the previous fo(&4), but
the coefficient functions become, in general, functions of the

valid for large Reynolds and magnetic Reynolds numbers
whenky/k ~Re¥*>1 andkj/k,~Rm**>1.

Substituting the relation§t.6) in Eq. (4.3), we arrive at
the spectrum in the form

(U Y3(g* +g*,) parametersw and A through the dimensionless ratjo/A.
E(k)= /3”1 2’;: e 2L ey (=23 Solving the RG equation by the method of characteristics,
(2m)*(g;y) we obtain the solution

:Ck812}/3k1746/3k3(e*2)/3 . _ous )
LKA Q) =P (k) v’k 2R, tkzv,l,x;g :

at the leading order of thé,e expansion. The value of the
Kolmogorov constan€, inferred from here ngmr(t,sk,./\;g)
2% 121/361/3(6+ 5)2/3

K (2e+36)%8

_ _ s |
:efidx73<X>/Xpmn(k)vzk—25Rb(tkzy,l%;g),
c_oincides With that obtained i_n the case of turbulent ad_VGC\'NhereE is now the solution of the Gell-Mann—Low equa-
tion of a passive scaldf3], which is, of course, not surpris- {igns:
ing, since the magnetic field is passively advected by the

velocity field in the scaling regime governed by the kinetic dg(s) —us

fixed point. dins g{ ),T}
V. RENORMALIZATION WITH MAXIMUM with the B8 functions explicitly depending os, the dimen-
DIVERGENCES ABOVE TWO DIMENSIONS sionless wave number.

We want to maintin the model UV finte forie-d—2 - e 8 ORI B C B e
>0 and simultaneously keep track of the effect of the addi- d ’

tional divergences near two dimensions. To this end, we inin this sense, it is not renormalizable in the limitc. To

- . . ._avoid dealing with these formal complications, we keep the
g&iﬂcgf?ﬂeag;gli; aJVéJ \Jsguttﬁg ;)r:ozlgg;?gggators, €. 1N additional cutoff A fixed (although large and choose the
7 renormalization procedure according to the principle of

vo'A _ _ — k2t maximum divergencelsl 9]: the same terms of the action are
Amn " (K =00 6A = K)Pma(k)e 0", renormalized as in the two-dimensional case in the previous
APY'A(K 1= (1) (A — K) P, (k)@ Uorok section(3.2), but the renormalization constants may have an
mn (U™ mn ' explicit dependence on the scale-setting parameter through
the ratiou/A. The two counterterms

1 2
vuA _ = _ 2 —vok|t|
Amn (k,t) 2 g(A k)UoVOPmn(k)e 0 fdx[l/Z(l_Z4)UV3902,U/72§V,V2VI

X (Gy1K 27 2%+ 9,20, +12(1—Z5)u?v3gpou 20’ V20']
1 ) are superfluous in the sense that in the lipitA —0, the
qubr?(k,t)zi (A —K)UgUgPq(k)e ™ torok It contribution to the Green functions of the graphs containing
the coupling constantg,, and g,, remains finite provided
X (Gp1cK 23 224+ gp20), 26=d—2 is fixed and finite and the other counterterms are

properly chosen. This is guaranteed by Polchinski’'s theorem
where A is the cutoff wave number. This change obviously[20]. We retain these counterterms in order to have a possi-
does not affect the large-scale properties of the model. Whility to pass to the limits—0 in the RG equations.
would like to emphasize that the additional cutoff must be The presence of the explicit cutoff implies some technical
introduced uniformly in all lines in order to maintain the difficulties in the calculation of the renormalization constants
model multiplicatively renormalizable. An attempt to intro- in the traditional field-theoretic approach, which arise be-
duce the cutoff, say, in the local part of the correlation func-cause we are dealing with massless vector fields. It turns out
tions only by the substitutiok®— 6(A —k)k? would fail to  that the coefficient functions of the RG equation are simplest
renormalize the model multiplicatively, because loop contri-in a renormalization procedure, which is similar to the
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momentum-shell renormalizatid®]. If we were calculating cutoff, the subtraction at zero momenta and frequencies is, in
over the whole wave-vector space without an explicit UV general, not possible in a massless model, whereas a subtrac-
cutoff, there would not be much difference between the eftion at vanishing frequencies and external momenta of the
fort required in both approaches. The presence of the U\brder of u leads to much more complicated calculations due
cutoff makes calculations with nonvanishing external wavethe heavy index structure.
vectors rather tedious. At one-loop accuracy in this scheme, thdunctions are

Let us remember that the choice of a renormalization pro-
cedure basically is the choice of the rule according to which _
the counterterm contributions are extracted from the pertur- Y1758
bation expansion of the Green’s functions of the model. The )
usual field-theoretic prescription is as follop&l]: Consider +(d°=2)(u 9,2+ 9n2) |,
a 1PI graphy, let R(y) be the renormalized value of the

graph, and leR(y) the value of the graph with subtracted

(d2—d—2€)u g,;+ (d*>+d—4+2a€)gp;

1
Tropl(d—D(d+2)(g,1+9,2) +(d+2)(d—3)

Vo=
counterterms of all the subgraphs, then Z (1+uB
= = X + ,
R(y)=R(y)~TR(), (5.0 (91+ G2
where the operatoll extracts the counterterm contribution 73:§[gb1+gb2_gv1_gv2]a (5.2
from R(y). Usually, R(y) =y on one-loop graphs, and the
renormalization scheme is specified by the actioR@j) on d2—2

multiloop graphs together with the definition of the operator 74:—[U(9u1+9u2)2+(9b1+gb2)2],
T. The counterterms may then be constructed recursively 29,.B

with the use of Eq(5.1) and the definitions o and R(y). 2(d—2)(d+2)
There is a rather large freedom in the choice of the counter- yg=——
term operator, but to arrive at the Green’s functions finite in Op2(1+u)B
the limit A— o in two dimensions—which we want to have

(9b11962)(9p1t9p2),

. . _ — ~ whereB=d(d+2)I'(d/2)(47)%2. These expressions reveal
a connection with the double expansion—the opera#on ., qgitional advantage of this renormalization scheme: at
must be chosen properly. L . ._one-loop order, there is no explicit dependencerd in
Here, we have used a renormalization procedure, in whicly,o ¢qefficient functions of the RG. At one-loop level, a di-
the operatiorR(y) is standard21], and the subtraction op- rect comparison with the expressions obtained in the frame-
eratorT is defined as follows: leff (w,k,A) be the function  work of the Wilson RG is also possible: the dependence on
of external frequencies and wave vectdvghich also de- 9u1, Op1, @ndu of the B functions By,1, Byp1, and B, cor-
pends on the cutoff parametdr) corresponding to the ex- responding to Eq(5.2) coincides with that of their counter-
pressionR(y) (this is not a 1PI graph, in geneyalhe sub- parts of Ref[3] up to notation.
traction operatofT extracts the same set of terms of the The set ofB functions generated by E¢p.2) allows for a
Maclaurin-expansion in the external wave vectors, whichfixed-point solution in the form of are expansion. Little
generate the counterterm$3.2), from the difference reflection shows that the fixed-point equations in this case
F.(w,k,A)—F (w,k,u). These coefficients of the Maclau- have a self-consistent solution with the following leading-
rin expansion are calculated at vanishing external frequemarder behavior:u=0(1), g,1=0(€), gp1=0(€), 0,>
cies and wave vectors. It should be noted that the coefficients O(€?), andg,,=0(€?). The actual fixed-point values of
of this Maclaurin expansion of the functién(w,k,A) itself  g,1, gp1, andu in the e expansion, as well as the stability
may not exist in the limitw— 0 in this “massless” model, regions with respect te, are determined by the same set of
but the differencé (w,k,A)—F (o,k,u) allows fora Ma-  equations as in the earlier momentum-sH&l and field-
claurin expansion finite in the limib—0 to the order re- theoretic[4] calculation above two dimensions. The stability
quired for the renormalization. The counterterm operdtor condition with respect to the dimension of space of these
and the combinatorics of the renormalization procedure fofixed points is, as expected>2.
higher-order graphs may then be constructed in the standard It should be noted that the functiop is finite in the set
fashion. Although this is actually not needed in the present5.2), whereas in the double-expansion approach, it was
one-loop calculation, the very possibility of this extension isequal to zerdEqg. (3.10]. This means that magnetic fixed
necessary to guarantee that the renormalization renders tipeints with bothg,; andg,, may exist. In fact, there is one
model finite in the limitA —« in two dimensions. such fixed point stable at high dimensions of space that gives
Effectively, at one-loop order, this prescription reducesrise to a magnetically driven scaling regime. This fixed point
the region of integration to the momentum shek k<A,  may be found in the expansion, and we have also investi-
which leads to the same calculation as in the momentumgated its stability numerically. Technically speaking, the ap-
shell renormalization. In higher orders, however, our renorpearance of a magnetic fixed point with both magnetic cou-
malization scheme does not coincide with the momentumplings nonvanishing would be a completely expected thing to
shell renormalization. The point of the presenthappen in the two-loop approximation, since we have not
renormalization procedure is that without some sort of IRfound any symmetry reasons or the like to prevent the renor-
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FIG. 1. The borderline dimensiod, between the stability re-

gions of the kinetic fixed point of the RG equatiof®8) and(5.2  ymperu* as a function of the space dimensidrand the decay
for magnetic forcing-decay parametnear the double-expansion arametere. The lowest curve corresponds to the leading order in

thresholda=1.427. This plot reveals the strong dependence of thne ¢ expansion, which is not affected by thermal fluctuations. The
borderline dimension on the paramegeiThe shaded region on the  ghaqeq region in the upper part of the plot corresponds to values

right corresponds to values>2/a, for which the forcing correla- €>2, for which an IR cutoff(kinetic integral length scalenust be
tion function in the powerlike form(2.6) leads to intractable IR jntoquced in the correlation functiof®.6).

divergences, and a corresponding IR cut@ffiagnetic integral
length scalg must be introduced.

FIG. 2. The fixed-point value of the inverse magnetic Prandtl

We are particularly interested in the stability of the magnetic
malization of the magnetic forcing at higher orders. Thus, tdiixed point, and have carried out extensive numerical calcu-
investigate this effect consistently in tleeexpansion would lations of the stability of this fixed point as a function ef
require a full two-loop renormalization of the model, which and the space dimensioh The results are plotted in Figs. 3
is beyond the scope of the present analysis. and 4.

On the other hand, in the cage-e—0, the set of coef- In F|g 3, the magnetic forcing-decay parameter 1
ficient functions(5.2) yields the coefficient function®.9) of  (j.e., the kinetic-forcing correlations fall off steeper in the
the double expansion of the previous section. Therefore, Wgave-vector space than those the magnetic fojcamgl it is
think.t.hat it is not totally unreasonab!e to use the set ofseen that for very smadl, a slowly enough decaying kinetic
coefficient functions(5.2) for an analysis of the RG fixed 4cing renders the magnetic scaling regime unstable. In par-

points for all dimensionsi=2. ticular, this threshold is ver [ i i i
: ; . L , y small in three dimensions. With
We have investigated the stability of the kinetic fixed ; " g
point given by Eq.(3.8) and (5.2) numerically for a finite the growth ofa, a strip of stability of the magnetic fixed
range ofe with results depicted in Figs. 1 and 2. We think

that this calculation, although it is a somewhat uncontrollable —
approximation, exhibits the effect of the thermahort- 0.64 |
range fluctuations of the fields qualitatively correctly. The —
stability of the kinetic scaling regime is strongly affected by unphysical |
the behavior of magnetic fluctuations: from Fig. 1, it is seen region
that the steeper falloff of the correlations of the magnetic — |
forcing in the wave-vector space compared with that of the

kinetic forcing the lower is the space dimension, above L
which the kinetic fixed point is stable. In particular, when the 0.657
parametera>1.427, the kinetic fixed point ceases to be -
stable even in two dimensions. In three dimensions, the ki- \0 5\0 6
netic scaling regime is stable against magnetic forcing, when A

a<1.15.

The monotonic growth of the kinetic fixed point value of €
the inverse magnetic Prandtl numhef as a function of the FIG. 3. The borderline dimensiod, between the stability re-
kinetic forcing-decay parameter in a fixed space dimension i§ions of the magnetic fixed point of the RG E¢3.8) and(5.2) for
depicted in Fig. 2. The plot shows also thelt is a mono-  magnetic forcing-decay parametr 1. For sufficiently small val-
tonically decreasing function of the space dimension at fixeqies ofa, the magnetic fixed point is unstable for any finite value of
€. The lowest-lying curve corresponds to the leading order o, put the region of stability grows with the growth afso that for
the e expansion 3] a>0.658, the magnetic point becomes stable even in three dimen-

sions for finite values ot. The shading shows the region, where
1 8(d+2)
U* :E -1+ 1+ T .

€>2, in which the powerlike correlation functiof2.6) cannot be
consistently used.
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point in thee, d plane appears such that the magnetic regime ' ' '
remains stable in three dimensions for all allowed kinetic S St =t
forcing patterns. It is also seen that the magnetic fixed point 1.0

is persistently unstable at<2.46 for all e. This borderline B -
dimension should be compared with that given by ¢hex- unphysical
pansiond,= 2.85. From the solution, it may be seen that this 23 regions:
significant discrepancy is due to the appearance of a stable \w/o unst\st. ke, foralla
magnetic fixed point completely different from that found in Oz ese,foras2 |
the e expansion: in the latter, the magnetic fixed point is 20 5.0\ s, forass
given by gn=05,=05,=u*=0 and gj=4d(d 21 e £oe,, for a>20"
+2)I'(d/2) (4m)%%ael(d>—3d—32), whereas at the mag- e, £, e,

netic fixed point, whose stability is plotted in Figs. 3 and 4, O o 10 1s 20 25 s
only g¥;=u*=0 with nonvanishing fixed-point values of c

the other couplings. Thus, the lowering of the borderline

dimension of stability of the magnetic scaling regime is & F|G. 4. The borderline dimensiod, between the stability re-
strong effect of the thermal fluctuations described by theyions of the magnetic fixed point of the RG E¢3.8) and (5.2) for
Short-range terms in the forcing correlation functions. FigurQarge values of the magnetic forcing-decay paramaterl. The
4 shows the lower boundary of the stability region of theshaded area and half planes with vertical dashed border lines show
magnetic fixed point for large values af when magnetic- regions, where> 2/a, in which the powerlike correlation function
forcing correlations fall off much faster than kinetic-forcing (2.6) cannot be consistently used.
correlations in the wave-vector space. A remarkable feature
of both plots is the insensitivity of the lower border of the stability condition of the kinetic fixed point near two dimen-
stability strip to the value of magnetic forcing-decay param-sions with respect to the magnetic forcing-decay parameter
etera. asa<1.427, which coincides with that of Rdf3], but dif-
fers from the result of Ref4].
VI. CONCLUSIONS We have also put forward an interpolation scheme, which
reproduces the earlier results in the case o axpansion in
In conclusion, we have carried out a RG analysis of theany fixed space dimensiod>2, and the results of the

large-scale asymptotic behavior of the solution of stochastipresem paper in the two-parameter expansior and 25
cally forced magnetohydrodynamic equations for all space-q—2 npear two dimensions. Using this interpolation ap-
dimensionsd=2. We have taken into account the additional proach, we have qualitatively analyzed the dependence of the
divergences appearing in two dimensions ignored or impropstapility of the kinetic and magnetic scaling regimes on the
erly treated in previous work. In a two-parameter expansiofjocing-decay parameters and the dimension of space and
scheme, we have found three infrared-stable fixed points ifgund that thermal fluctuations drastically lower the border-

the physically releyant region of the parameter spacgine dimension of stability of the magnetic scaling regime.
spanned by the forcing parameters and the inverse magnetic
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