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Stochastic magnetohydrodynamic turbulence in space dimensionsdÐ2
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Interplay of kinematic and magnetic forcing in a model of a conducting fluid with randomly driven mag-
netohydrodynamic equations has been studied in space dimensionsd>2 by means of the renormalization
group. A perturbative expansion scheme, parameters of which are the deviation of the spatial dimension from
two and the deviation of the exponent of the powerlike correlation function of random forcing from its critical
value, has been used in one-loop approximation. Additional divergences have been taken into account that arise
at two dimensions and have been inconsistently treated in earlier investigations of the model. It is shown that
in spite of the additional divergences, the kinetic fixed point associated with the Kolmogorov scaling regime
remains stable for all space dimensionsd>2 for rapidly enough falling off correlations of the magnetic
forcing. A scaling regime driven by thermal fluctuations of the velocity field has been identified and analyzed.
The absence of a scaling regime near two dimensions driven by the fluctuations of the magnetic field has been
confirmed. A renormalization scheme has been put forward and numerically investigated to interpolate be-
tween thee expansion and the double expansion.
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I. INTRODUCTION

During the past two decades, asymptotic analysis of
chastic transport equations@Navier-Stokes equation, magne
tohydrodynamic ~MHD! equations, advection-diffusion
equation and the like# has attracted increasing attentio
Various forms of the renormalization group~RG! have
proved to be particularly useful in this investigation, and
great deal of work has been carried out in the RG analysi
the stochastic Navier-Stokes equation and the problem
passive scalar~turbulent diffusion or heat conduction! @1,2#.
Somewhat less effort has been devoted to the asymp
analysis of stochastic magnetohydrodynamics since the
neering work of Fournieret al. @3# and Adzhemyanet al. @4#.
In particular, in these papers the existence of two differ
anomalous scaling regimes~kinetic and magnetic! in three
dimensions was established corresponding to two nontri
infrared-stable fixed points of the renormalization group
was also conjectured that in two dimensions, the magn
scaling regime does not exist due to the instability of
magnetic fixed point. However, in both papers, there w
flaws in the renormalization of the model in two dimensio
@2,5#. Even more serious shortcomings are present in re
investigations of MHD turbulence@6,7#, in which a specifi-
cally two-dimensional setup has been applied with the us
the stream function and magnetic potential. Therefore,
sults obtained for the two-dimensional case in these pa
cannot be considered completely conclusive.

In the present paper, we have first carried out a fie
theoretic RG analysis of the stochastically forced equati
of magnetohydrodynamics with the proper account of ad
tional divergences that arise in two dimensions. This gi
rise to a two-parameter expansion of scaling exponents
scaling functions@5#, the parameters of which are the devi
tion of the spatial dimension from two and the deviation
the exponent of the powerlike correlation function of rando
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forcing from its critical value. In this double expansion, th
standard procedure of minimal subtractions was used in
renormalization of the corresponding field-theoretic mod
We have carried out a one-loop RG analysis of the lar
scale asymptotic behavior of the model and confirmed
basic conclusions of the previous analyses@3,4# that near two
dimensions a scaling regime driven by the velocity fluctu
tions may exist, but no magnetically driven scaling regim
can occur. We have also identified a scaling regime driv
by thermal fluctuations@8# of the velocity field.

Second, we have performed a renormalization of
model with a different choice of finite renormalization
order to find at which noninteger dimension the magne
fixed point ceases to be stable. This borderline dimens
was found in Ref.@3# with the use of the momentum-she
RG in a setup valid in a fixed space dimensiond.2. In the
two-parameter expansion with the deviation of the expon
of the powerlike correlation function of random forcing fro
its critical valuee and 2d5d22 as expansion parameter
this effect cannot be traced. Therefore, we have carried o
RG analysis according to the ‘‘principle of maximum dive
gences’’ in the sense that we have included in the renorm
ization all graphs relevant in two dimensions, and fixed
finite renormalization in a way that reproduces the results
a momentum-shell renormalization@9# at one-loop order.
This procedure gives rise to RG functions such that in
limit of small d, e, they reproduce the results of the two
parameter expansion, and in the limit of smalle ~but finited)
they yield the results of the usuale expansion@3,4#.

We have also investigated the long-range asymptotic
havior of the model in the framework of the latter schem
without any small parameter and found, in particular, that
this case, thermal fluctuations make the value of the bord
line dimension of the magnetic scaling regime significan
lower (dc52.46) than in thee expansion@3# (dc52.85).
©2001 The American Physical Society11-1
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This paper is organized as follows: Section II starts fro
the functional formulation of the solution of stochas
MHD. This is convenient for the analysis based on the st
dard field-theoretic RG approach, the details of which
described in Sec. III. The Kolmogorov constant for MHD
calculated in Sec. IV at the leading order of the tw
parameter expansion. In Sec. V, a RG analysis of the mo
with maximum divergences is carried out in arbitrary dime
sion, and the observed strong effect of thermal fluctuation
discussed. In Sec. VI, the conclusions are presented.

II. FIELD THEORY FOR STOCHASTIC
MAGNETOHYDRODYNAMICS

We consider the model of stochastically forced condu
ing fluid described by the system of magnetohydrodyna
equations for the fluctuating velocity fieldv(t,x)[v(x) of an
incompressible conducting fluid and the magnetic induct
B5Armb (r is the density andm the permeability of the
fluid! in the form @3,4#

] tv1P@~v•“ !v2~b•“ !b#2n0¹2v5f v, ~2.1!

] tb1~v•“ !b2~b•“ !v2n0u0¹2b5f b, ~2.2!

together with the incompressibility conditions

“•v50, “•f v50, “•f b50. ~2.3!

In Eq. ~2.1!, P is the transverse projection operator,n0 the
~unrenormalized! kinematic viscosity, and 1/u0 the unrenor-
malized magnetic Prandtl number. In statistical applicatio
of the field-theoretic RG, the unrenormalized~bare! param-
eters are the physical ones.

The statistics ofv andb are completely determined by th
nonlinear Eqs.~2.1!,~2.2!,~2.3!, and the probability distribu-
tion of the external large-scale random forcesf v, f b. It is
customary@3,4# to consider random forcesf v and f b having
a zero-mean Gaussian distribution with correlation functio
of the form

Dmn~x!5d~ t !E ddk

~2p!d
eik•xD~k!S dmn2

kmkn

k2 D , ~2.4!

in which the time correlations of the fields have the charac
of white noise, while the spatial correlations are control
by the scalar functionD(k). Transversality of the matrix
~2.4! is a consequence of the equations“•v5“•b50.

To analyze renormalization near two dimensions, we c
sider Eqs.~2.1!, ~2.2!, and~2.3! supplemented by the forcin
statistics

^ f m
v ~x1! f n

v~x2!&5u0n0
3Dmn~x12x2 ;$1,gv10,gv20%!,

^ f m
b ~x1! f n

b~x2!&5u0
2n0

3Dmn~x12x2 ;$a,gb10,gb20%!,

^ f m
v ~x1! f n

b~x2!&50, ~2.5!

where
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Dmn~x;$A,B,C%!5d~ t !3E ddk

~2p!d
Pmn~k!eik•x

3@Bk222d22Ae1Ck2#. ~2.6!

All the dimensional constantsgv10, gb10, gv20, andgb20, in
Eq. ~2.5! control the amount of randomly injected energ
The choice of the values of the parameterse and d deter-
mines the powerlike falloff of the long-range forcing corr
lations and the space dimension of the system under con
eration.

We choose uncorrelated kinematic and magnetic driv
@^f vf b&50#, because we are considering arbitrary space
mensiond>2 and it is not possible to define a nonvanishi
correlation function of a vector field and a pseudovector fi
in this case. This may be done separately for integer dim
sions of space, but, contrary to the claims of some auth
@3,10#, it is no obstacle for application of the RG@4#.

The structure of the matrixDmn in Eq. ~2.6! reflects a
more detailed intrinsic statistical definition of forcing, who
consequences are deeply discussed in Refs.@2,11#. Techni-
cally, it is necessary to accompany the long-range corr
tions @corresponding to the termk222d22 A e in Eq. ~2.6!# by
local correlations@described by the analytic ink2 term in the
correlation function~2.6!# in order to construct a consisten
renormalization procedure for the corresponding fie
theoretic model@5,12,13#. This feature has been overlooke
in the previous analyses of the problem@3,4#. The prefactors
u0n0

3 andu0
2n0

3 in Eq. ~2.5! have been extracted for the con
venience of calculations.

The definition ~2.6! includes two principal—low– and
high–wave-number scales—kinetic forcings separated
transition region in the vicinity of the characteristic wav
number of orderO(@B/C#1/(2d12Ae)). The forcing contribu-
tion with local correlations gives a phenomenological d
scription of small-scale thermal fluctuations of the magne
induction and the velocity field@8#.

The long-range parts of the translational invariant cor
lation functions~2.6! become scale invariant at the valuese
52,a51. For the exponente, the valuee52 is physically
most reasonable, since it represents the assumption that
dom forces in the Navier-Stokes Eq.~2.1! act at very large
scales, which substitutes for the effect of boundary con
tions.

We are working in an arbitrary dimension, but the reno
malization will be carried out within the two-dimension
model. In two-dimensional magnetohydrodynamic turb
lence, in contrast to fluid turbulence, there are direct ene
cascades in both two and three dimensions. Therefore,
natural to expect that the scaling behavior is rather simila
both cases, and we apply the same forcing spectrum in
space dimensionsd>2.

We use the correlation functions

^v j 1
~x1!v j 2

~x2!v j 3
~x3!•••v j N

~xN!&, ~2.7!

where 1< j r<d,r 51,2, . . . ,N as measurable quantities fo
the description of turbulence statistics. We have applied
RG method to the calculation of asymptotic properties of
1-2
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correlation functions in the way initiated in Ref.@14#. This
approach is based on a formal mapping from the stocha
model ~2.4! to a quantum-field model@15,16# with a De
Dominicis-Janssen actionS$v,v8,b,b8%, which is a func-
tional of the physical fieldsv,b and independent solenoida
auxiliary fields v8,b8. Thus, the correlation functions~2.7!
may be expressed as functional averages with the ‘‘we
functional’’ W5expS. The system of the stochastic MHD
Eqs.~2.1!, ~2.2!, ~2.3!, ~2.5!, and~2.6! gives rise to the fol-
lowing De Dominicis-Janssen action:

S5
1

2E dx1E dx2@u0n0
3vm8 ~x1!

3Dmn~x12x2 ;$1,gv10,gv20%!vn8~x2!1u0
2n0

3bm8 ~x1!

3Dmn~x12x2 ;$a,gb10,gb20%!bn8~x2!#

1E dx$v8•@2] tv2~v•“ !v1n0¹2v1~b•“ !b#

1b8•@2] tb1u0n0¹2b1~b•“ !v2~v•“ !b#%. ~2.8!

The dimensional constantsgv10, gb10, gv20, and gb20,
which control the amount of randomly injected ener
through Eq.~2.5!, play the role of expansion parameters
the perturbation theory.

III. TWO-PARAMETER EXPANSION OF THE MODEL

The action~2.8! gives rise to four three-point interactio
vertices defined by the standard rules@17#, and the following
set of propagators:

Dmn
vv8~k,t !5Dmn

v8v~2k,2t !5u~ t !Pmn~k!e2n0k2t,

Dmn
bb8~k,t !5Dmn

b8b~2k,2t !5u~ t !Pmn~k!e2u0n0k2t,

Dmn
vv ~k,t !5

1

2
u0n0

2Pmn~k!e2n0k2utu~gv10k
22e22d1gv20!,

~3.1!

Dmn
bb ~k,t !5

1

2
u0n0

2Pmn~k!e2u0n0k2utu~gb10k
22 ae22d1gb20!

in the time–wave-number representation. With due acco
of Galilei invariance of the action~2.8!, and careful analysis
of the structure of the perturbation expansion, it can
shown @4# that for any fixed space dimensiond.2, only
three one-particle irreducible~1PI! Green functionsGvv8,
Gbb8, andGv8bb with superficial UV divergences are gene
ated by the action. They give rise to counter terms of
form already present in the action, which thus is multiplic
tively renormalizable by power counting for space dime
sionsd.2.

We would like to emphasize that the structure of ren
malization should always be analyzed separately and it is
at all obvious that the nonlinear terms are not renormali
in the solution of the stochastic MHD equations. In fa
direct calculation shows that the Lorentz-force term is ren
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malized. There seems to be a certain amount of confus
about this point in the recent literature. For instance, in Re
@6,10#, the authors erroneously neglect renormalization
nonlinear terms as high-order effect. The approach, ado
in Ref. @6# for two-dimensional MHD turbulence, was quit
recently criticized by Kim and Yang@7#, who, alas, in their
field-theoretic treatment of the same problem, ignore ren
malization of the Lorentz force without any justification
They also neglect renormalization of the forcing correlatio
by effectively considering renormalization of the model
d.2, which does not seem to be appropriate in a setup
which the strictly two-dimensional quantities, the strea
function and magnetic potential, are used for the descrip
of the problem.

The analysis of the autocorrelation functions of the velo
ity field and magnetic induction is essential near two dime
sions, since in two dimensions additional divergences in
graphs of the 1PI Green’s functionsGv8v8 andGb8b8 occur.
The point here is@5,12# that the nonlocal term of the actio
~and the similar one with the auxiliary fieldb8)

E dtE ddx1E ddx2v8~x1 ,t !•v8~x2 ,t !

3E ddk

~2p!d
k222d22eeik•(x12x2),

brought about by the force correlation functions~2.5! is not
renormalized since the divergences produced by the loop
tegrals of the graphs are always local in space and time@17#.
The simplest way to include the corresponding local coun
termsv8¹2v8 and b8¹2b8 in the renormalization is to add
correspondinglocal terms to the force correlation function a
the outset in order to keep the model multiplicatively ren
malizable, which is convenient technically. This is why w
have used the force correlation functions~2.5! and~2.6! with
both long-range and short-range correlations. As a result,
action~2.8! is multiplicatively renormalizable and allows fo
a standard RG asymptotic analysis@17#.

In the momentum-shell analysis of Fournieret al. @3#,
these divergences were taken into account only in the spe
case, when the force correlation function~2.6! is local, i.e.,
}k2 ~formally, this was fixed by the condition 2d12Ae
50, which excludesAe from the parameters of the model!.
In the field-theoretic treatment of Adzhemyanet al. @4#, the
contribution of the additional divergences was prescribed
a renormalization of the nonanalytic term}k222d22e, al-
though only analytic ink2 terms are produced in the cours
of renormalization.

The model is regularized using a combination of analy
and dimensional regularization with the parameterse and
2d5d22. As a consequence, the UV divergences appea
poles in the following linear combinations of the regularizin
parameters:e, d, 2e1d, and (a11)e1d. The UV diver-
gences may be removed by adding suitable counterterm
the basic actionSB obtained from the unrenormalized on
~2.8! by the substitution of the renormalized parameters
the bare ones: gv10→m2egv1 , gv20→m22dgv2 , gb10
1-3



s

e,
th
th
n’
ts
tio
e

or

V
ct
th

q
-
uc

m
ig

s

er

ld
e

of

PI
ese
c-
e

al-

are

n-

r,

ion
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→m2aegb1 , gb20→m22dgb2 , n0→n, u0→u, wherem is a
scale-setting parameter having the same canonical dimen
as the wave number.

To construct an analog of the usuale expansion withe
andd as small parameters of the same order of magnitud
is convenient to use the minimal-subtraction scheme for
renormalization. In this approach, only singular parts of
Laurent series of the superficially divergent 1PI Gree
functions are included in the renormalization constan
which give rise to the counter terms added to the basic ac
to make the Green’s functions of the resulting renormaliz
model UV finite. The counterterms for the basic action c
responding to the unrenormalized action~2.8! are

DS5E dxFn~Z121!v8¹2v1un~Z221!b8¹2b

1
1

2
~12Z4!un3gv2m22dv8¹2v8

1
1

2
~12Z5!u2n3gb2m22db8¹2b8

1~Z321!v8~b•“ !bG , ~3.2!

where the renormalization constantsZ1 ,Z2 ,Z4 ,Z5 renormal-
izing the unrenormalized ~bare! parameters e0
5$gv10,gv20,gb10,gb20,u0 ,n0% and the constantZ3 renor-
malizing the fieldsb, andb8, are chosen to cancel the U
divergences appearing in the Green’s functions constru
using the basic action. Due to the Galilean invariance of
action, the fieldsv8, andv are not renormalized.

In a multiplicatively renormalizable model, such as E
~2.8!, the counterterms~3.2! may be chosen in a form con
taining a finite number of terms of the same algebraic str
ture as the terms of the original action~2.8!. Thus, all UV
divergences of the graphs of the perturbation expansion
be eliminated by a redefinition of the parameters of the or
nal model.

Renormalized Green’s functions are expressed in term
the renormalized parameters

gv15gv10m
22eZ1

2Z2 , gv25gv20m
2dZ1

2Z2Z4
21 ,

n5n0Z1
21 , u5u0Z2

21Z1 , ~3.3!

gb15gb10m
22 aeZ1Z2

2Z3
21 , gb25gb20m

2dZ1Z2
2Z3

21Z5
21 ,

which are the parameters of the renormalized actionSR
5SB1DS connected with the unrenormalized action~2.8!
by the relation of multiplicative renormalization

SR$v,b,v8,b8,e%5S$v,bZ3
1/2,v8,b8Z3

21/2,e0%,

wheree is a shorthand for all the renormalized paramet
gv1 , gv2 , gb1 , gb2 , u, andn. Calculation of the correlation
and response functions of the velocity and magnetic fie
with the use of the renormalized action yields renormaliz
Green’s functions without UV divergences.
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Independence of the unrenormalized Green’s functions
the scale-setting parameterm may be expressed in the form
of differential RG equations for the renormalized 1
Green’s functions. To keep notation simple, we quote th
equations only for the renormalized pair-correlation fun
tions of the velocity field and the magnetic induction. W
define the Fourier transforms as

WR mn
vv ~ t12t2 ,k;g!

5E ddx1

~2p!d
^vm~x1 ,t1!vn~x2 ,t2!&eik•(x12x2),

WR mn
bb ~ t12t2 ,k;g!

5E ddx1

~2p!d
^bm~x1 ,t1!bn~x2 ,t2!&eik•(x12x2).

The basic RG equations for the correlation functions are

Fm ]

]m
1bg

]

]g
2g1n

]

]nGWR mn
vv 50,

Fm ]

]m
1bg

]

]g
2g1n

]

]n
1g3GWR mn

bb 50, ~3.4!

wherebg]g is a shorthand for

bg

]

]g
5bgv1

]

]gv1
1bgv2

]

]gv2
1bgb1

]

]gb1
1bgb2

]

]gb2

1bu

]

]u
.

The coefficient functions of Eqs.~3.4! bg and g1 are ex-
pressed in terms of logarithmic derivatives of the renorm
ization constants. We use the definitions

g i5m
] ln Zi

]m U
0

, bg5m
]g

]mU
0

, ~3.5!

whereg5$gv1 ,gv2 ,gb1 ,gb2 ,u%, and the subscript ‘‘0’’ re-
fers to partial derivatives taken at fixed values of the b
parameterse0. It should be noted that here the functionsbg
andg1 are functions of the parametersg only.

Expressing the correlation functions through dimensio
less scalar functionsRv andRb as

WR mn
vv ~ t,k;g!5n2k22dPmn~k!Rv~t,s;g!,

WR mn
bb ~ t,k;g!5n2k22dPmn~k!Rb~t,s;g!,

wheres5k/m, sP@0,1# is the dimensionless wave numbe
and t5tnk2 the dimensionless time, and solving Eqs.~3.4!
by the method of characteristics, we obtain the correlat
functions in the form

WR mn
vv ~ t,k;g!5Pmn~k!n̄2k22dRv~ tk2n̄,1;ḡ!,
1-4
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WR mn
bb ~ t,k;g!5e*1

sdx g3[ ḡ(x)]/x

3Pmn~k!n̄2k22dRb~ tk2n̄,1;ḡ!, ~3.6!

whereḡ is the solution of the Gell-Mann–Low equations:

dḡ~s!

d ln s
5bg@ ḡ~s!#, ~3.7!

and n̄ is the running coefficient of viscosity

n̄5ne2*1
sdx g1[ ḡ(x)]/x.

The scale-invariant asymptotic behavior of the correlat
functions stems from the existence of a stable fixed poin
the RG transformationbg50 determined by the Gell-Mann–
Low Eqs.~3.7!.

The definitions~3.5! and the relations~3.3! yield b func-
tions of the form

bgv15gv1~22e12g11g2!,

bgv25gv2~2d12g11g22g4!,

bgb15gb1~22 ae1g112g22g3!, ~3.8!

bgb25gb2~2d1g112g22g32g5!,

bu5u~g12g2!.

At one-loop accuracy, theg functions are

g15
1

32p
@u~gv11gv2!1gb11gb2#,

g25
1

8p

gv11gv22gb12gb2

u11
,

g35
1

16p
~gb11gb22gv12gv2!, ~3.9!

g45
1

32p

u~gv11gv2!21~gb11gb2!2

gv2
.

There are no UV divergences in the 1PI Green’s funct
Gb8b8 in the one-loop approximation, therefore,

g550, Z551, ~3.10!

which is a specific property of the two-dimensional MHD
Large-scale asymptotic behavior is governed by infra

stable fixed points of Eqs.~3.7!, determined by the system o
equationsbg(g* )50, and the conditionsḡ→g* , when s

→0. For ḡ(s) close tog* , we obtain a system of linearize
equations

S Is
d

ds
2V D ~ ḡ2g* !50,
05641
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where I is the 535 unit matrix and the matrixV

5(]bg /]g)ug* . Solutions of this system behave likeḡ5g*
1O(sl j), when s→0. The exponentsl j , j 51,2,3,4,5 are
the eigenvalues of the matrixV. In the vicinity of the fixed
point, all the trajectoriesg(s) approach the fixed point, if the
matrix V is positive definite@i.e., Re(l j ).0#.

Apart from the Gaussian fixed pointgv1* 5gv2* 5gb1*
5gb2* 50, with no fluctuation effects on the large-scale a
ymptotics, which is IR stable ford.0,e,0,a.0, there are
two nontrivial IR stable fixed points of the RG with non
negativegv1* , gv2* , gb1* , gb2* , andu* .

The thermal fixed point is generated by short-range c
relations of the random force with

gv1* 50, gv2* 524p~11A17!d,

gb1* 50, gb2* 50, ~3.11!

and the inverse magnetic Prandtl number

u* 5
A1721

2
.1.562. ~3.12!

Physically, the asymptotic behavior described by this fix
point is brought about by thermal fluctuations of the veloc
field @8#. The region of stability of the thermal fixed poin
~3.11!,~3.12! is 2e13d,0,d,0 in the d,e plane. For the
magnetic forcing-decay parametera, the stability region is
determined by the inequality 8ae1(131A17)d,0.

The kinetic fixed point @3# generated by the forced fluc
tuations of the velocity field is given by the universal inver
magnetic Prandtl number~3.12!, the parameters

gv1* 5
128p

9~A1721!

e ~2e13d!

e1d
,

gv2* 5
128p

9~A1721!

e2

d1e
, ~3.13!

and zero couplings of the magnetic forcing

gb1* 5gb2* 50,

and it may be associated with turbulent advection of
magnetic field. The values ofgv1* andgv2* in Eq. ~3.13! cor-
respond to those found previously in Ref.@5#. The region of
stability of the kinetic fixed point in thed,e plane is e
.0,2e13d.0. The stability of this fixed point also re
quires that the parametera,(131A17)/12'1.427 indepen-
dent of the ratiod/e. In spite of the absence of renormaliz
tion of the forcing correlation, the momentum-shell approa
@3# yields the same condition.

The system of Eqs.~3.8!, ~3.9!, and ~3.10! for the fixed
points in this multicharge problem is rather complicated, a
thus, has several~in general complex-number! solutions,
which we do not quote explicitly here, because they are
physically relevant: apart from the fixed points listed abo
there are eight IR unstable real-number fixed points in
1-5



v
,

u

-
w
c

th

-

, o
x

e
m
ts
io
tw

e
of

n

a

-
t t

n
on

s
on

s
o

no

th

e

on

the

ral
is-

ur-
at

l to
un-
nor-
ese
nly
-
s.
Eq.
f

M. HNATICH, J. HONKONEN, AND M. JURCISIN PHYSICAL REVIEW E64 056411
physical region~all g>0) of the parameter space, and se
eral unphysical ones. Among the unstable fixed points are
particular, all the possible candidates tomagnetic fixed
points, i.e., fixed points with a nonvanishing magnetic co
pling constant. Therefore, the conclusion made in Refs.@3,4#
~although on inconsistent grounds! that the RG does not pre
dict any magnetically driven scaling regime at and near t
dimensions, is confirmed in the double-expansion approa

It should be noted, however, that the vanishing of
functiong5 renders the linear combinations ofg functions in
the functionsbgb1 and bgb2 equal: they both contain only
g112g22g3 @see Eq.~3.8!#. This has the important conse
quence that there is no fixed point with bothgb1 and gb2
nonvanishing: at least one of them must be zero. This
course, severely reduces the set of possible magnetic fi
points at the outset.

It would be interesting, however, to follow the crossov
from this regime to the scaling regime governed by the co
petition of the stable kinetic and magnetic fixed poin
which exists in three dimensions. In the double-expans
approach, the space dimension is assumed to be close to
therefore, the results obtained above are not applicabl
this end. In the usuale expansion, the leading-order value
the borderline dimension between the two regimesdc5(3
1A649)/10'2.848@3#.

All the renormalization constants and the RG functio
quoted above may be calculated also at finited. The resulting
system of fixed-point equations allows for a solution in
form of an e expansion~with finite d) and yields the same
result as the usuale expansion at the leading order. How
ever, this approach is not self consistent in the sense tha
field theory is not renormalizable at finited, but only in the
form of a simultaneous expansion in the coupling consta
andd @17#. Therefore, in order to construct an interpolati
procedure between thee,d expansion and the usuale expan-
sion, something has to be done with the UV divergence
d.2 introduced by the local terms in the force correlati
functions. This issue will be dealt with in Sec. V.

IV. KOLMOGOROV CONSTANT FOR STOCHASTIC
MAGNETOHYDRODYNAMICS NEAR TWO DIMENSIONS

The energy spectrumE(k) in magnetohydrodynamics i
given by the sum of equal-time pair-correlation functions
the velocity field and magnetic induction

Wnn
vv~ t,x;t,x!1Wnn

bb~ t,x;t,x!52E
0

`

dk E~k!. ~4.1!

Note that the energy spectrum is defined through unre
malized correlation functions. From Eqs.~3.6! and~4.1!, we
infer an expression for the energy spectrum in terms of
scaling functions as

E~k!5
~d21!k124e/3

~4p!d/2G~d/2!
S gv10u0n0

3

ḡv1ū
D 2/3

@Rv~0,1;ḡ!

1Z3~g!e*1
sdx g3[ ḡ(x)]/xRb~0,1;ḡ!#,
05641
-
in

-

o
h.
e

f
ed

r
-
,
n
o,

to

s

he

ts

at

f

r-

e

where for the running coefficient of viscosityn̄, the expres-
sion

n̄5S gv10u0n0
3

ḡv1ū
D 1/3

k22e/3 ~4.2!

has been used. The relation~4.2! is a consequence of th
connection between the functionsbv1 , bu , g1, andg2 @18#.

At the kinetic fixed point, the spectrum has the form

E~k!5S gv10u0n0
3

gv1* u*
D 2/3

~d21!k124e/3

~4p!d/2G~d/2!
@Rv~0,1;g* !

1Z3~g!sg3(g* )Rb~0,1;g* !#. ~4.3!

However, at leading orderRb(0,1;g)51/2(gb11gb2), and
since at the kinetic fixed pointgb1* 5gb2* 50 andg3(g* ).0,
only the scaling functionRv survives here.

The kinetic- and magnetic-energy injection rates«v and
«b may be expressed as

«v5
1

2E ddk

~2p!d
^f v~k!•f v~2k!&,

«b5
1

2E ddk

~2p!d
^f b~k!•f b~2k!&. ~4.4!

For our choice of correlation functions after the introducti
of simple sharp cutoffs, Eq.~4.4! yields the relation between
the unrenormalized values of the coupling constants and
energy injection rates in the form

«v5
~d21!u0n0

3

2 E
kI,k,kd

ddk

~2p!d
~gv10k

222d22e1gv20k
2!,

«b5
~d21!u0

2n0
3

2 E
kI,k,kd8

ddk

~2p!d

3~gb10k
222d22ae1gb20k

2!, ~4.5!

wherekI is the wave number corresponding to the integ
scale, andkd ,kd8 are the characteristic wave numbers of v
cous and resistive dissipation, respectively.

In the stationary state modeling developed isotropic t
bulence, the energy injection is assumed to take place
large scales. Therefore, we put the parametersgv20 andgb20,
which correspond to small-scale injection of energy, equa
zero. It should be borne in mind that the corresponding r
ning coupling constants are created in the course of re
malization regardless of the unrenormalized values of th
parameters. The present perturbative calculation yields o
the leading order in thee,d expansion of the amplitude co
efficients in the scaling form of the correlation function
Therefore the coupling constants should be solved from
~4.5! as functions of«v and«b also only at leading order o
e,d expansion. Thus, we arrive at the relations
1-6
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«v5
u0n0

3gv10

16p
kd

422e ,

«b5
u0

2n0
3gb10

16p
~kd8!422ae, ~4.6!

valid for large Reynolds and magnetic Reynolds numbe
whenkd /kI;Re3/4@1 andkd8/kI;Rm3/4@1.

Substituting the relations~4.6! in Eq. ~4.3!, we arrive at
the spectrum in the form

E~k!5
~u* !1/3~gv1* 1gv2* !

~2p!1/3~gv1* !2/3
«v

2/3k124e/3kd
4(e22)/3

5Ck«v
2/3k124e/3kd

4(e22)/3

at the leading order of thed,e expansion. The value of th
Kolmogorov constantCk inferred from here

Ck5
23121/3e1/3~e1d!2/3

~2e13d!2/3

coincides with that obtained in the case of turbulent adv
tion of a passive scalar@13#, which is, of course, not surpris
ing, since the magnetic field is passively advected by
velocity field in the scaling regime governed by the kine
fixed point.

V. RENORMALIZATION WITH MAXIMUM
DIVERGENCES ABOVE TWO DIMENSIONS

We want to maintain the model UV finite for 2d5d22
.0 and simultaneously keep track of the effect of the ad
tional divergences near two dimensions. To this end, we
troduce an additional UV cutoff in all propagators, i.e., i
stead of the set~3.1!, we use the propagators

Dmn
vv8L~k,t !5u~ t !u~L2k!Pmn~k!e2n0k2t,

Dmn
bb8L~k,t !5u~ t !u~L2k!Pmn~k!e2u0n0k2t,

Dmn
vvL~k,t !5

1

2
u~L2k!u0n0

2Pmn~k!e2n0k2utu

3~gv10k
22e22d1gv20!,

Dmn
bbL~k,t !5

1

2
u~L2k!u0n0

2Pmn~k!e2u0n0k2utu

3~gb10k
22 ae22d1gb20!,

whereL is the cutoff wave number. This change obvious
does not affect the large-scale properties of the model.
would like to emphasize that the additional cutoff must
introduced uniformly in all lines in order to maintain th
model multiplicatively renormalizable. An attempt to intro
duce the cutoff, say, in the local part of the correlation fun
tions only by the substitutionk2→u(L2k)k2 would fail to
renormalize the model multiplicatively, because loop con
05641
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butions to the complete~dressed! correlation function would
not reproduce such a structure in the wave-vector space

In contrast with particle field theories, we will keep th
cutoff parameterL fixed, although large compared with th
physically relevant wave-number scale. This introduces
explicit dependence onL in the coefficient functions of the
RG, which has to be analyzed separately in the large-s
limit in the coordinate space. The setup is thus very sim
to that of Polchinski@20#.

The RG equations maintain the previous form~3.4!, but
the coefficient functions become, in general, functions of
parametersm and L through the dimensionless ratiom/L.
Solving the RG equation by the method of characterist
we obtain the solution

WR mn
vv ~ t,k,L;g!5Pmn~k!n̄2k22dRvS tk2n̄,1,

ms

L
;ḡD ,

WR mn
bb ~ t,sk,L;g!

5e*1
sdx g3(x)/xPmn~k!n̄2k22dRbS tk2n̄,1,

ms

L
;ḡD ,

where ḡ is now the solution of the Gell-Mann–Low equa
tions:

dḡ~s!

d ln s
5bgF ḡ~s!,

ms

L G ,
with the b functions explicitly depending ons, the dimen-
sionless wave number.

Above two dimensions, an UV renormalization of th
model would require an infinite number of counterterms, a
in this sense, it is not renormalizable in the limitL→`. To
avoid dealing with these formal complications, we keep
additional cutoffL fixed ~although large!, and choose the
renormalization procedure according to the principle
maximum divergences@19#: the same terms of the action a
renormalized as in the two-dimensional case in the previ
section~3.2!, but the renormalization constants may have
explicit dependence on the scale-setting parameter thro
the ratiom/L. The two counterterms

*dx@1/2~12Z4!un3gv2m22dv8¹2v8

11/2~12Z5!u2n3gb2m22db8¹2b8#

are superfluous in the sense that in the limitm/L→0, the
contribution to the Green functions of the graphs contain
the coupling constantsgv2 and gb2 remains finite provided
2d5d22 is fixed and finite and the other counterterms a
properly chosen. This is guaranteed by Polchinski’s theor
@20#. We retain these counterterms in order to have a po
bility to pass to the limitd→0 in the RG equations.

The presence of the explicit cutoff implies some techni
difficulties in the calculation of the renormalization constan
in the traditional field-theoretic approach, which arise b
cause we are dealing with massless vector fields. It turns
that the coefficient functions of the RG equation are simp
in a renormalization procedure, which is similar to th
1-7
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momentum-shell renormalization@9#. If we were calculating
over the whole wave-vector space without an explicit U
cutoff, there would not be much difference between the
fort required in both approaches. The presence of the
cutoff makes calculations with nonvanishing external wa
vectors rather tedious.

Let us remember that the choice of a renormalization p
cedure basically is the choice of the rule according to wh
the counterterm contributions are extracted from the per
bation expansion of the Green’s functions of the model. T
usual field-theoretic prescription is as follows@21#: Consider
a 1PI graphg, let R(g) be the renormalized value of th
graph, and letR̄(g) the value of the graph with subtracte
counterterms of all the subgraphs, then

R~g!5R̄~g!2TR̄~g!, ~5.1!

where the operatorT extracts the counterterm contributio
from R̄(g). Usually, R̄(g)5g on one-loop graphs, and th
renormalization scheme is specified by the action ofR̄(g) on
multiloop graphs together with the definition of the opera
T. The counterterms may then be constructed recursiv
with the use of Eq.~5.1! and the definitions ofT and R̄(g).
There is a rather large freedom in the choice of the coun
term operator, but to arrive at the Green’s functions finite
the limit L→` in two dimensions—which we want to hav
a connection with the double expansion—the operationR̄
must be chosen properly.

Here, we have used a renormalization procedure, in wh
the operationR̄(g) is standard@21#, and the subtraction op
eratorT is defined as follows: letFg(v,k,L) be the function
of external frequencies and wave vectors~which also de-
pends on the cutoff parameterL) corresponding to the ex
pressionR̄(g) ~this is not a 1PI graph, in general!. The sub-
traction operatorT extracts the same set of terms of t
Maclaurin-expansion in the external wave vectors, wh
generate the counterterms~3.2!, from the difference
Fg(v,k,L)2Fg(v,k,m). These coefficients of the Maclau
rin expansion are calculated at vanishing external frequ
cies and wave vectors. It should be noted that the coeffici
of this Maclaurin expansion of the functionFg(v,k,L) itself
may not exist in the limitv→0 in this ‘‘massless’’ model,
but the differenceFg(v,k,L)2Fg(v,k,m) allows for a Ma-
claurin expansion finite in the limitv→0 to the order re-
quired for the renormalization. The counterterm operatoT
and the combinatorics of the renormalization procedure
higher-order graphs may then be constructed in the stan
fashion. Although this is actually not needed in the pres
one-loop calculation, the very possibility of this extension
necessary to guarantee that the renormalization render
model finite in the limitL→` in two dimensions.

Effectively, at one-loop order, this prescription reduc
the region of integration to the momentum shellm,k,L,
which leads to the same calculation as in the moment
shell renormalization. In higher orders, however, our ren
malization scheme does not coincide with the momentu
shell renormalization. The point of the prese
renormalization procedure is that without some sort of
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cutoff, the subtraction at zero momenta and frequencies is
general, not possible in a massless model, whereas a sub
tion at vanishing frequencies and external momenta of
order ofm leads to much more complicated calculations d
the heavy index structure.

At one-loop accuracy in this scheme, theg functions are

g15
1

2B
@~d22d22e!u gv11~d21d2412ae!gb1

1~d222!~u gv21gb2!#,

g25
1

~11u!B
@~d21!~d12!~gv11gv2!1~d12!~d23!

3~gb11gb2!#,

g35
2

B
@gb11gb22gv12gv2#, ~5.2!

g45
d222

2gv2B
@u~gv11gv2!21~gb11gb2!2#,

g55
2~d22!~d12!

gb2~11u!B
~gb11gb2!~gv11gv2!,

whereB5d(d12)G(d/2)(4p)d/2. These expressions reve
an additional advantage of this renormalization scheme
one-loop order, there is no explicit dependence onm/L in
the coefficient functions of the RG. At one-loop level, a d
rect comparison with the expressions obtained in the fra
work of the Wilson RG is also possible: the dependence
gv1 , gb1, andu of the b functionsbgv1 , bgb1, andbu cor-
responding to Eq.~5.2! coincides with that of their counter
parts of Ref.@3# up to notation.

The set ofb functions generated by Eq.~5.2! allows for a
fixed-point solution in the form of ane expansion. Little
reflection shows that the fixed-point equations in this c
have a self-consistent solution with the following leadin
order behavior: u5O(1), gv15O(e), gb15O(e), gv2
5O(e2), andgb25O(e2). The actual fixed-point values o
gv1 , gb1, andu in the e expansion, as well as the stabilit
regions with respect toe, are determined by the same set
equations as in the earlier momentum-shell@3# and field-
theoretic@4# calculation above two dimensions. The stabili
condition with respect to the dimension of space of the
fixed points is, as expected,d.2.

It should be noted that the functiong5 is finite in the set
~5.2!, whereas in the double-expansion approach, it w
equal to zero@Eq. ~3.10!#. This means that magnetic fixe
points with bothgb1 andgb2 may exist. In fact, there is one
such fixed point stable at high dimensions of space that g
rise to a magnetically driven scaling regime. This fixed po
may be found in thee expansion, and we have also inves
gated its stability numerically. Technically speaking, the a
pearance of a magnetic fixed point with both magnetic c
plings nonvanishing would be a completely expected thing
happen in the two-loop approximation, since we have
found any symmetry reasons or the like to prevent the ren
1-8
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malization of the magnetic forcing at higher orders. Thus
investigate this effect consistently in thee expansion would
require a full two-loop renormalization of the model, whic
is beyond the scope of the present analysis.

On the other hand, in the cased;e→0, the set of coef-
ficient functions~5.2! yields the coefficient functions~3.9! of
the double expansion of the previous section. Therefore,
think that it is not totally unreasonable to use the set
coefficient functions~5.2! for an analysis of the RG fixed
points for all dimensionsd>2.

We have investigated the stability of the kinetic fixe
point given by Eq.~3.8! and ~5.2! numerically for a finite
range ofe with results depicted in Figs. 1 and 2. We thin
that this calculation, although it is a somewhat uncontrolla
approximation, exhibits the effect of the thermal~short-
range! fluctuations of the fields qualitatively correctly. Th
stability of the kinetic scaling regime is strongly affected
the behavior of magnetic fluctuations: from Fig. 1, it is se
that the steeper falloff of the correlations of the magne
forcing in the wave-vector space compared with that of
kinetic forcing the lower is the space dimension, abo
which the kinetic fixed point is stable. In particular, when t
parametera.1.427, the kinetic fixed point ceases to
stable even in two dimensions. In three dimensions, the
netic scaling regime is stable against magnetic forcing, w
a,1.15.

The monotonic growth of the kinetic fixed point value
the inverse magnetic Prandtl numberu* as a function of the
kinetic forcing-decay parameter in a fixed space dimensio
depicted in Fig. 2. The plot shows also thatu* is a mono-
tonically decreasing function of the space dimension at fi
e. The lowest-lying curve corresponds to the leading orde
the e expansion@3#

u* 5
1

2 F211A11
8~d12!

d G .

FIG. 1. The borderline dimensiondc between the stability re-
gions of the kinetic fixed point of the RG equations~3.8! and~5.2!
for magnetic forcing-decay parametera near the double-expansio
thresholda51.427. This plot reveals the strong dependence of
borderline dimension on the parametera. The shaded region on th
right corresponds to valuese.2/a, for which the forcing correla-
tion function in the powerlike form~2.6! leads to intractable IR
divergences, and a corresponding IR cutoff~magnetic integral
length scale! must be introduced.
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We are particularly interested in the stability of the magne
fixed point, and have carried out extensive numerical cal
lations of the stability of this fixed point as a function ofe
and the space dimensiond. The results are plotted in Figs.
and 4.

In Fig. 3, the magnetic forcing-decay parametera,1
~i.e., the kinetic-forcing correlations fall off steeper in th
wave-vector space than those the magnetic forcing! and it is
seen that for very smalla, a slowly enough decaying kineti
forcing renders the magnetic scaling regime unstable. In p
ticular, this threshold is very small in three dimensions. W
the growth ofa, a strip of stability of the magnetic fixed

e

FIG. 2. The fixed-point value of the inverse magnetic Pran
numberu* as a function of the space dimensiond and the decay
parametere. The lowest curve corresponds to the leading order
the e expansion, which is not affected by thermal fluctuations. T
shaded region in the upper part of the plot corresponds to va
e.2, for which an IR cutoff~kinetic integral length scale! must be
introduced in the correlation function~2.6!.

FIG. 3. The borderline dimensiondc between the stability re-
gions of the magnetic fixed point of the RG Eqs.~3.8! and~5.2! for
magnetic forcing-decay parametera,1. For sufficiently small val-
ues ofa, the magnetic fixed point is unstable for any finite value
e, but the region of stability grows with the growth ofa so that for
a.0.658, the magnetic point becomes stable even in three dim
sions for finite values ofe. The shading shows the region, whe
e.2, in which the powerlike correlation function~2.6! cannot be
consistently used.
1-9
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point in thee, d plane appears such that the magnetic reg
remains stable in three dimensions for all allowed kine
forcing patterns. It is also seen that the magnetic fixed p
is persistently unstable atd<2.46 for all e. This borderline
dimension should be compared with that given by thee ex-
pansiondc52.85. From the solution, it may be seen that th
significant discrepancy is due to the appearance of a st
magnetic fixed point completely different from that found
the e expansion: in the latter, the magnetic fixed point
given by gv1* 5gv2* 5gb2* 5u* 50 and gb1* 54d(d
12)G(d/2)(4p)d/2ae/(d223d232), whereas at the mag
netic fixed point, whose stability is plotted in Figs. 3 and
only gv1* 5u* 50 with nonvanishing fixed-point values o
the other couplings. Thus, the lowering of the borderl
dimension of stability of the magnetic scaling regime is
strong effect of the thermal fluctuations described by
short-range terms in the forcing correlation functions. Fig
4 shows the lower boundary of the stability region of t
magnetic fixed point for large values ofa, when magnetic-
forcing correlations fall off much faster than kinetic-forcin
correlations in the wave-vector space. A remarkable fea
of both plots is the insensitivity of the lower border of th
stability strip to the value of magnetic forcing-decay para
etera.

VI. CONCLUSIONS

In conclusion, we have carried out a RG analysis of
large-scale asymptotic behavior of the solution of stocha
cally forced magnetohydrodynamic equations for all sp
dimensionsd>2. We have taken into account the addition
divergences appearing in two dimensions ignored or impr
erly treated in previous work. In a two-parameter expans
scheme, we have found three infrared-stable fixed point
the physically relevant region of the parameter sp
spanned by the forcing parameters and the inverse mag
Prandtl number. Anomalous scaling behavior is brou
about in the basins of attraction of the thermal and kine
fixed points, the former of which is due to thermal fluctu
tions, and the latter due to long-range correlated rand
forcing of the Navier-Stokes equation. The thermal fix
point is related to the anomalous asymptotic behavior du
thermal fluctuations near two dimensions. With a prop
choice of the force-correlation function, the regime govern
by the kinetic fixed point may be related to developed i
tropic turbulence in a conducting fluid. We have obtained
v

d

t.
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stability condition of the kinetic fixed point near two dimen
sions with respect to the magnetic forcing-decay param
asa,1.427, which coincides with that of Ref.@3#, but dif-
fers from the result of Ref.@4#.

We have also put forward an interpolation scheme, wh
reproduces the earlier results in the case of ane expansion in
any fixed space dimensiond.2, and the results of the
present paper in the two-parameter expansion ine and 2d
5d22 near two dimensions. Using this interpolation a
proach, we have qualitatively analyzed the dependence o
stability of the kinetic and magnetic scaling regimes on
forcing-decay parameters and the dimension of space
found that thermal fluctuations drastically lower the bord
line dimension of stability of the magnetic scaling regime
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gions of the magnetic fixed point of the RG Eqs.~3.8! and~5.2! for
large values of the magnetic forcing-decay parametera.1. The
shaded area and half planes with vertical dashed border lines s
regions, wheree.2/a, in which the powerlike correlation function
~2.6! cannot be consistently used.
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